
A Low-Level Hybridization between Memetic Algorithm
and VNS for the Max-Cut Problem

Abraham Duarte
ESCET-URJC

Campus de Móstoles
28933 Madrid, Spain

+34 914888116
abraham.duarte@urjc.es

Ángel Sánchez
ESCET-URJC

Campus de Móstoles
28933 Madrid, Spain

+34 91 6647452
angel.sanchez@urjc.es

Felipe Fernández
FI-UPM

Campus de Montegancedo
28660 Madrid Spain

+34 91 3367371
Felipe.Fernandez@es.bosch.com

Raúl Cabido
ESCET-URJC

Campus de Móstoles
28933 Madrid, Spain

+34 91 4887190
rcabido@gmail.com

ABSTRACT
The Max-Cut problem consists of finding a partition of the graph
nodes into two subsets, such that the sum of the edge weights
having endpoints in different subsets is maximized. This NP-hard
problem for non planar graphs has different applications in areas
such as VLSI and ASIC design. This paper proposes an
evolutionary hybrid algorithm based on low-level hybridization
between Memetic Algorithms and Variable Neighborhood Search.
This algorithm is tested and compared with the results, found in
the bibliography, obtained by other hybrid metaheuristics for the
same problem. Achieved experimental results show the suitability
of the approach, and that the proposed hybrid evolutionary
algorithm finds near-optimal solutions. Moreover, on a set of
standard test problems, new best known solutions were produced
for several instances.

Categories & Subject Descriptors: G.2.1 [Discrete
Mathematics]: Combinatorics – combinatorial algorithms; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search – heuristic methods, graph and tree search algorithms

General Terms: Algorithms, Experimentation.

Keywords: Max-Cut, Metaheuristic, Evolutionary
Algorithms, Memetic Algorithms, VNS.

1. INTRODUCTION
An important graph bipartition problem is the Max-Cut problem
defined for a undirected weighted graph S = (V, E, W), where V is
the set of vertices or nodes (|V| = n), E is the set of undirected
arcs or edges (|E| = m), and W is the set of edge weights.

The Max-Cut optimization problem consists in finding a partition
of the set V into two disjoint subsets (C, C’) such that the sum of
the weights of edges with endpoints in different subsets is
maximized. Every partition of vertices V into C and C´ is usually
called a cut or cutset and the sum of the involved edges weights is
called weight of the cut or cut value.

The considered Max-Cut optimization problem is given by the
maximization of the cut value:

∑
∈∈

=
´,

)',(
CuCv

vuwCCw

where wuv, is the weight of edge (u,v) ∈ V.

Reference [13] proves that the decision version of Max-Cut
problem is NP-Complete. Therefore, it is convenient to devise
algorithms for finding an approximate solution to this problem in
a reasonable time. Notice that for planar graphs exact algorithms
can solve the Max-Cut problem in polynomial time [15].

Figure 1 shows a cut example for an undirected graph. The cut
edges are represented with thick lines. Assuming that all edges
have the same weight, that is equal to one, the cut value shown in
Figure 1 is 6.

Some practical applications of the Max-Cut problem can be found
in diverse fields like VLSI design [3], statistical physics [1] and
other related to combinatorial optimization [25]

Several continuous, linear programming and semidefinite
relaxations for the Max-Cut have been proposed to achieve high
quality solutions in a reasonable running time. Among these
alternatives, the most suitable is the semidefinite relaxation (SDP)
because it is solvable in polynomial time. Moreover, this SDP
value establishes an upper bound of optimal cut values [5]. It can
be used to test the performance of approximate algorithms for the
referred problem.

Figure 1. Cutset example on an example graph.

Reference [23] describes a semidefinite relaxation of the Max-Cut
problem. Goemans et al. [9] proposed a randomized algorithm
that guarantees a 0.878-approximation to the optimum and, in
addition, an upper bound on the optimum. A very interesting
rank-2 relaxation algorithm is proposed in [2] that gives, in mean,
better solutions than other theoretical relaxations [5].

Cut

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

999

In this paper we propose a new evolutionary algorithm based on
low-level hybridization [24] between a memetic algorithm
[10][19][20] and Variable Neighborhood Search (VNS) [16][18]
metaheuristic for finding an approximate solution to the Max-Cut
problem. In order to evaluate the performance of our approach,
we compare results produce by own algorithm with other reported
by different hybrid metaheuristics for the same problem and with
the same benchmarks. The proposed metaheuristic is based on a
genetic algorithm with an additional Variable Neighborhood
Search (VNS) based on the problem domain knowledge. This
hybrid algorithm achieves a remarkable improvement of the
obtained solution.

The rest of the paper is organized as follows. Section 2 revises
other algorithms and metaheuristics applied to the Max-Cut
problem. An overview of evolutionary algorithms is shown in
Section 3. In Section 4 the general optimization strategy is
described. Section 5 introduces the main characteristics of
Variable Neighborhood Search. A detailed description of the
proposed algorithm is presented in Section 6. Experimental results
are shown in Section 7. Finally, Section 8 concludes the paper.

2. MAX-CUT ALGORITHMS REVIEW
Several approaches have been proposed to the Max-Cut problem.
Probably the most famous algorithm (in graph partition context) is
the Lin-Kernigham algorithm [14], based on the improvement of a
solution by exchanging nodes between different subsets defined
by the cut. This algorithm ensures that both subsets have the same
size. In Fiduccia and Mattheyses [7] work this restriction is
relaxed. Note that almost all local search strategies are based on
these two algorithms [17].

Taking into account SDP relaxation, the work of Shani and
Gonzalez [22] can be considered the first algorithm which
achieves an acceptable result (0.5-approximation to the optimum).
Based on this work, Goemans et al. [9] proposed an SDP
relaxation which obtains a 0.878-approximation to the optimum.
This algorithm achieves good results for small graphs but usually
its performance is affected for medium or large size graphs
[4][11][17].

Gosti et al. [11] incorporates a local search strategy in Goemans
algorithm, getting higher quality solutions. Based on this idea U.
Feige et al. have developed an algorithm that ensures a 0.921-
approximation to the optimum for graph whose nodes have
limited its degree.

An experimental study of six Max-Cut algorithms is presented in
[4]. These are respectively based on an integer relaxation, a
random algorithm, two heuristic algorithms, a genetic algorithm
and a Divide-and-Conquer algorithm. From this experimental
study is concluded that to achieve high quality solutions, the use
of local search strategies is required.

Kim el al. [17] proposes a hybrid genetic algorithm (memetic
algorithm) for the Max-Cut problem. This work is based on a
standard genetic algorithm with several local search strategies
(inspired in Fiduccia-Matheysses algorithm [7]).

Festa et al. [5] present an experimental study of three
metaheuristics (GRASP, VNS and PR) for the considered
problem. These authors propose several hybridizations among
these metaheuristics, which usually achieves very good results.

Duarte et al. [6] describe a hierarchical social which is compared
with other GRASP and memetic implementations.

Among all revised algorithms, the rank-2 relaxation algorithm [2]
is in mean the method which obtains the best solution and,
surprisingly, spending lower time than other SDP relaxations
[2][5].

3. EVOLUTIONARY ALGORITHMS
Genetic Algorithms (GA) [10][19] are random search algorithms
inspired by the Darwinian model of natural evolution. Potential
solutions are coded by a chromosome structure, called individual.
The set of individuals is called population. In order to solve an
optimization problem, GA successively transform the population
by means of random operators (selection, crossover and mutation)
that generally increases the quality of the corresponding solutions
(coded by individuals).

Unlike traditional GAs, Memetic Algorithms (MA) [20] are
intrinsically concerned with exploiting available knowledge about
the problem under study. This approach is not an optimal
mechanism but, in general, yields to an algorithm enhancement.
Optimization is accomplished in MA framework by incorporating
problem dependent heuristics: approximation algorithms, local
search techniques, specialized recombination operators, truncated
exact methods, etc. Moreover, MAs can be additionally improved
by means of a low-level or high-level hybridization [20] with
other metaheuristics.

Evolutionary algorithms (EA) are a broad class of metaheuristics
characterized algorithmically by:

• Population: of individuals which represent partial or
complete solutions.

• Selection method: that selects individuals in a slant fashion.
The best individuals have the higher selection probability.

• Modification method: that generates new individuals by
means of a stochastic operator application. It can be:

o Unary: that create a new individual slightly modified
from an old individual (mutation)

o m-ary: that create new individuals by means of the
combination of m-individuals

In this sense, EA includes as particular cases MA and GA and
other metaheuristics such that Cultural Algorithms or Swarm
Intelligence.

4. OPTIMIZATION STRATEGY
EA are metaheuristics where almost all implementation effort
comes from the search diversification. On the other hand,
strategies such that VNS and their variants [16][18] focus almost
entirely on the search intensification. With respect to this fact,
metaheuristic such that EA and VNS can be considered as
complementary algorithms. Moreover, the hybridization of these
techniques can yield to very effective and robust methods.

This paper proposes a new evolutionary algorithm based on a
low-level hybridization [24] between a specific MA, developed
for the Max-Cut Problem and Variable Neighborhood Search
(VNS) metaheuristic. The developed algorithm is a good trade-off

1000

between intensification and diversification. The intensification
phase is mainly carried out by the VNS procedure. This
metaheuristic intensively looks for quality solutions in a
predefined set of neighborhood structures. If the search procedure
is stuck, VNS changes the neighborhood structure in order to get
away from local optimum. Notice that although the main task of
VNS is the search intensification, this metaheuristic also
diversifies the search procedure by means of neighborhood
changing.

On the other hand, EA objective is mainly related with the
diversification stage. This task is accomplished with traditional
operators (selection, mutation and crossover) enriched with some
knowledge about the problem. Notice that although the main task
of MA is the search diversification, this metaheuristic also
intensifies the search procedure by means of population evolution
and the inclusion of problem-dependent operators.

In the following two sections, we respectively describe the VNS
and the hybrid MA implementations, developed for the Max-Cut
problem.

5. VARIABLE NEIGHBORHOOD SEARCH
This section resumes the main features of Variable Neighborhood
Search (VNS) metaheuristic. This metaheuristic, which was
originally proposed by Hansen and Mladenovíc [16][18], is based
on the exploration of a dynamic neighborhood model. Each step
has three major phases: neighbor generation, local search and
jump.

Unlike to other metaheuristics based on local search methods,
VNS allows changes of the neighborhood structure during the
search. VNS explores increasingly neighborhoods of the current
best found solution x. The basic idea of VNS is to change the
neighbourhood structure when the local search is trapped on a
local minimum.

Let Nk, k = 1,…, kmax be a set of predefined neighborhood
structures and let Nk(x) be the set of solutions in the kth-order
neighborhood of a solution x. In the first phase, a neighbor
x’∈Nk(x) of the current solution is applied. Next, a solution x’’ is
obtained by applying local search to x’. Finally, the current
solution jumps from x to x’’ if it improves the former one.
Otherwise, the order k of the neighborhood is increased by one
and the above steps are repeated until some stopping condition is
met. The pseudo-code of a typical VNS procedure is illustrated in
Figure 2.

In the case of the Max-Cut problem, the kth-order neighborhood is
defined by all solutions that can be derived from the current one
by selecting k vertices and transferring each vertex from one
subset of the vertex bipartition to the other subset.

The local search phase is based on the following neighborhood
structure. Let (Ca, Ca’) be the current cutset solution. For each
vertex v ∈ V we associate a new neighbor cutset (Cb, Cb’):

∈−+
∈+−

==
'}{'};{

}{'};{
´),(´),(1 CavifvCavCa

CavifvCavCa
CaCaNCbCb

We define for each node v ∈ V the functions σ and σ´ as:

∑
∈

=
Cu

vuwv)(σ ∑
∈

=
'

)('
Cu

vuwvσ

These two functions are characterized by the change in the
objective function value associated with moving vertex v from one
subset of the cut to the other. This way, a vertex makes a
movement in order to improve the cut value in the two following
situations:

CCthenvvCvif

CCthenvvCvif
v

v

→>∧∈

→>∧∈

')()'('

')(')(

σσ

σσ

where 'CC
v

→ (equivalently CC
v

→') represents the movement of
vertex v from subset C to C’ (C∪C’ = V)
All possible moves are examined. The current solution is replaced
by its best improving neighbor solution. The search stops after all
possible moves have been evaluated and no improving neighbor is
found. The used local search strategy is summarized by the
pseudo-code of Figure 2.

This local search procedure tests all possible movements for each
node between C and C’ and vice versa. Therefore, the current
solution is replaced by the best solution found in the
neighborhood structure defined above. The procedure ends when
none possible neighbor movement improves the current solution.

6. HYBRID METAHEURISTIC
This section describes a new evolutionary low-level hybridization
for the Max-Cut problem. In order to use a memetic algorithm for
solving the Max-Cut problem, we need to code each feasible
solution. Let V= {1,…,n} the nodes set of a given graph. The
possible cuts on this graph can be coded by a Boolean n-vector I
= (i1,…,in) such that the value of each component iu ∈ {0,1} is
given by the characteristic function:

∈
∈

=
',0

,1
Cuif
Cuif

iu

procedure VNS(x)
 var
 x: Initial solution
 x’,x’’: Intermediate solutions
 k: Neighbourhood order
 begin
 /*First Neighbourhood Structure*/
 k = 1;
 while k < kmax do
 /*Select an random solution in k-
 neighbourhood structure*/
 x’ = Random(x,Nk(x))
 /*Use the local search procedure shown
 in Figure 3*/
 x’’ = LocalSearch(x’);
 /*Replace the actual solution by the new
 one when an improvement is obtained */
 if w(x’’) > w(x) then
 x = x’’;
 k = 1;
 else
 k = k + 1;
 end if
 end while
 end
end VNS

Figure 2. VNS high level pseudo-code

1001

Figures 4.a and 4.b show two examples of cuts and their
respective encoding.

7. HYBRID METAHEURISTIC
This section describes a new evolutionary low-level hybridization
for the Max-Cut problem. In order to use a memetic algorithm for
solving the Max-Cut problem, we need to code each feasible
solution. Let V= {1,…,n} the nodes set of a given graph. The
possible cuts on this graph can be coded by a Boolean n-vector I
= (i1,…,in) such that the value of each component iu ∈ {0,1} is
given by the characteristic function:

∈
∈

=
',0

,1
Cuif
Cuif

iu

Figures 4.a and 4.b show two examples of cuts and their
respective encoding.

3

4 5

1

2

Cut1

Cut2

C

C’

3

4 5

1

2

C

C’

0 1 0 1 11 1 0 00

Figure 4. Cutsets representation

In the evaluation step, we used as selection method the fitness
roulette-wheel selection [10][19], which favors individuals with
high fitness value without suppressing the chance of selection of
individuals with low fitness, thus avoiding premature convergence
of the population.
The proposed algorithm starts with a random initial population of
cuts, generated by Initial_Population procedure. Then, these cuts
are improved (with probability pi) by means of a local search
procedure described in Figure 3.

The selection of a subset of individuals in the implemented
genetic algorithm is carried by means of a standard roulette wheel
procedure. Some selected individuals are crossovered, with a
probability pr. In the proposed implementation, we have not use
standard crossover because this method can destroy the high
quality structures obtained by means of evolution. We have
considered fixed crossover [4][19], which takes into account the
structural information of each individual and provides more
quality descendants [19]. Graphically, the crossover strategy is
presented in the Figure 5.

The considered fixed crossover f:{1,0}×{1,0}→{1,0} is specified
by the random Boolean function:

≠
=∧=
=∧=

=
βα

βα
βα

βα
ifrand
if
if

()01
111
000

),f(

where rand01() is a random Boolean value. In this way, if both
parents are in the same subset, the offspring node lies in this
subset. Otherwise, the node is randomly assigned to one of the
subsets.

With this crossover function, each bit iu of new offspring is given
by:

Vuimotherifatherfi uuu ∈∀=))(),((
To end up the evolution cycle, new individuals are subject to
mutation (a random change of a node from C to C’ or vice versa)
with probability pm=1/|V|. By this way, the allele mutation
probability (pm) is problem independent.
Figure 6 shows the high level pseudo-code of the corresponding
hybrid evolutionary algorithm.

0 1 0 1 1

1 1 0 10

1 1 0 00

f1,0

rand
0,1

1

(
)=

(
)=

f1,1

1
(

)
=

f0,0

 0
(

)
=

f0,1

rand
0,1

0

(
)=

(
)=

f0,1

rand
0,1

1

(
)=

(
)=

fa ther

mother

Soon

Figure 5. Fixed crossover procedure

8. EXPERIMENTAL RESULTS
This section describes the obtained experimental results using the
proposed hybrid metaheuristic. We also show a quantitative
comparison with other metaheuristics applied to the same
problem.
The computational experiments were performed in an Intel
Pentium 4 processor at 1.7 GHz, with 256 MB of RAM. All
algorithms were coded in C++, without optimization, and by the
same programmer in order to have more comparable results.

procedure Local_Search(g)
 var
 g=(C,C´): Cutset structure
 begin
 for v = 1 to Nodes_in_considered_graph do
 if v∈C and σ(v)>σ’(v) then
 /* v: C→C´ */
 C = C \ {v};
 C´= C’ ∪ {v};
 end if
 if v∈C´and σ(v)<σ’(v) then
 /* v: C’→C */
 C’= C’\{v};
 C = C ∪ {v};
 end if
 end for
 end
end Local_Search

Figure 3. Local search high level pseudo-code

1002

The main parameters and corresponding using values of the
designed hybrid evolutionary metaheuristic are:

• Memetic algorithm:

o Initial random population of 50 individuals, called
PopSize.

o PopSize initially is improved by means of the referred local
search strategy (in Figure 3) with a probability pi = 0.25.

o The probability of crossover pc is 0.6 and it is performed
by FixedCrossover method.

o The maximum number of generations MaxGen is 50.

o After the crossover, the new individuals are also improved
by the described VNS strategy with a probability pi.= 0.25.

o In each generation, a mutation process is applied with a
probability pm = 1/|V|.

o The procedure ends when none individual improves its
fitness or it is reached the MaxGen value

• Variable Neighborhood Search

o Each child obtained after a fixed crossover application is
the Initial Solution for VNS procedure.

o The maximum neighborhood order kmax is set to 1% of the
number of nodes in the graph.

The metaheuristic was tested on the benchmark graphs Gx shown
in Table 1. These test problems were generated by Helmberg and
Rendl using the graph generator described in [12]. These graphs
are planar, toroidal and randomly generated with varying sparsity
and size. The last two graphs types are non-planar. There are
graphs with unitary, integer and real weights. Moreover, these
weights can be positive or negative. In the experiments, the graph
sizes vary from 800 nodes to 3000 and their density from 0.17%
to 6.12%.
The first three columns of Table 1 respectively show the graph
name, and their number of nodes (n) and arcs (m). The following
five columns present respectively, for 50 independent iterations of
the proposed algorithm, the following statistical values: mean
(mn), standard deviation (sd), max value (max), min value (min)
and frequency (fq). This last value gives the (maximum) number
of times that the search procedure has found the same value.
The last two right columns show respectively the SDP value and a
ratio between the maximum cutset value (obtained for each graph)
and its SPD bound (for the same graph), given by the formula:

)(
)()(1

GxSDPValue
GxMaxValueGxSDPValuer −−=

This parameter r establishes a measurement of how close is the
value obtained by our hybrid metaheuristic and the corresponding
upper bound given by SDP value. As shows Table 1, the
maximum obtained value achieves, at least, 88 % of the SDP
bound.

Therefore, the solutions found with our approach have a high-
quality. Moreover, the proposed algorithm is highly robust
because the mean value is relatively high. This robustness is also
confirmed with the following factors: the closeness between max
and min value and the low value of standard deviation. It is
important to remark that the obtained results are quite general
because the graphs used in the experiments have a high variety.
The proposed algorithm converges to the same solution in very
few occasions (see fq column). We can conclude that our proposal
ensures a good search procedure diversification. This property is
mainly relevant in problems with sharp space solutions.

Table 2 presents a quantitative comparison between our proposal
and seven Max-Cut state-of-the-art algorithms. The first three
columns show the name of the graph. Obviously the number of
nodes n and the number of arcs m are the same that the graphs in
Table 1.
The next column shows the achieved results with 0.612 version of
circut rank-2 relaxation with default parameters except
(N,M)=(50, 10), for intensifying the search [1].

procedure Hybrid_Evolutionary_Algorithm()
 var

g=(C,C´): individual cutset structure
 gg: population of cutsets
 MaxGen: Number of Generations
 PopSize: Number of individuals
 pc,pm: Cross. and mut. probabilities
 pi: Improvement probability
 i: Generation Counter
 j: Individual Counter
 begin
 /*Generate random cuts individuals*/
 gg=Initial_Population();
 /*Optimize initial population*/
 Apply(Local_Search((),pi);
 Evaluate_Population();
 Best_Solution = Best_Individual();
 for i = 1 to MaxGen
 j = 0;
 while(i < PopulationSize)
 /*Criteria: Random Wheel*/
 Father = Selection();
 r = rand01();/*Random function*/
 if (r < pc)
 /*Criteria: Random Wheel*/
 Mother = Selection();
 Child=FixCross(Father,Mother);
 Apply(VNS(Child),pi);
 InsertInPopulation(Child);
 j = j + 1;
 else
 InsertInPopulation(Father);
 end if
 end while
 Apply(Mutation(),pm);
 Evaluate_Population();
 Best_Solution = Best_Individual();
 end for
end
end Hybrid_Evolutionary_Algorithm()

Figure 6. Hybrid algorithm high level pseudo-code.

1003

The following seven columns display the results for the
considered metaheuristics: GRASP, GRASP + Path Relinking
(PR), GRASP + Variable Neighborhood Search (VNS), GRASP +
VNS + PR, VNS and VNS + PR. A detailed description of these
metaheuristics can be found in [5]. Note that all these approach
are trajectorial metaheuristics, and they only consider one solution
in each iteration. The results shown by these columns are the best
found cut value in 1000 independent iterations of each
metaheuristic. These results have been extracted from the work of
Festa et al. [5].The 8th column shows the results obtained by our
hybrid evolutionary algorithm. Finally, the right column shows
the SDP value [5,9] that can be considered as an upper bound.
The best cutset value for each graph is highlighted in bold in
Table 2. As shown by this table, the proposed low-level

hybridization between memetic algorithm and VNS, obtains
similar computational results compared with the rest of
metaheuristics. The main different is that our algorithm is
executed only once with a population of 50 individuals and 50
iterations. Remind that the other metaheuristics have been run
1000 times.
Our proposal obtain the best cut value known up to now for 6
graphs only with 50 individuals and 50 generations. And find the
best cut value for 12 graphs. Moreover, in our VNS
implementation kmax is 1% of number of nodes, so this value is
bounded by 8 ≤ kmax ≤ 30). In VNS implementations presented in
Table 2, so kmax is 100. Notice that this value has a terrible impact
in execution time because it increases hugely the procedure
execution time.

Problem Statistic values in 50 iterations

Name Nodes

(n)

Edges

(m)

Mean (mn) Standard

Deviation

Max

Value

Min

Value ()

Frequency

(fq)

r SDP

G1

G2

G3

800 19176 11608.28

11528.78

11606.30

14.31

7.87

10.15

11624

11620

11622

11576

11581

11585

11

1

6

0,9624

0,9616

0,9623

12078

12084

12077

G11

G12

G13

800 1600 555.92

547.68

527.52

2.86

3.15

2.70

562

554

580

550

542

566

1

1

1

0,8963

0,8921

0,8992

627

621

645

G14

G15

G16

800 4694 3052.00

3036.26

3039.02

4.19

4.65

3.97

3061

3046

3047

3043

3028

3031

5

3

4

0,9605

0,9612

0,9606

3187

3169

3172

G22

G23

G24

2000 19990 13295.36

13299.30

13309.15

13.13

15.38

12.81

13318

13322

13319

13278

13274

13305

6

5

8

0,9430

0,9429

0,9425

14123

14129

14131

G32

G33

G34

2000 4000 1381.00

1352.29

1359.14

7.17

5.82

6.20

1392

1362

1368

1368

1344

1350

15

18

21

0,8923

0,8861

0,8877

1560

1537

1541

G35

G36

G37

2000 11778 7647.67

7634.67

7646.81

9.85

7.38

5.81

7665

7643

7657

7631

7624

7638

4

5

5

0,9581

0,9559

0,9560

8000

7996

8009

G43

G44

G45

1000 9990 6646.56

6638.28

6637.12

8.89

7.20

6.91

6655

6649

6634

6657

6650

6650

6

6

5

0,9471

0,9469

0,9450

7027

7022

7020

G48

G49

G50

3000 6000 6000

6000

5880

6000

6000

2862

6000

6000

5880

6000

6000

5880

41

39

32

1,0000

1,0000

0,9820

6000

6000

5988

Table 1. Relative results for Helmberg´s instances [11] in 50 independent iteratons

1004

Table 2. Comparison between our evolutionary hybrid metaheuristics and seven metaheuristic for the Helmberg’s instances.

In order to get more comparable results, an average among all
graphs is taken. These results are shown in Table 3. First column
shows the metaheuristic name. In the second column appears the
sum of the cutsets obtained for the 24 graphs. Finally, the third
presents the relative cut value with respect to SDP upper bound.
Again, the average value obtained by our proposal is good. Our
proposal beats clearly to the rest of metaheuristicse except circut
rank-2 relaxation. In this case, although this method obtains
slightly better results, it needs a very long execution time. Notice
that individuals, generations and kmax, values are very low.
Increasing or tuning adequately these values, probably our hybrid
algorithm even could be reached at circuit.

Table 3. Relative results for all metaheuristics

Name Circut GRASP GRASP

+ PR

GRASP

+ VNS

GRASP+

VNS+PR

VNS VNS+

PR

MA+

VNS

SDP

G1

G2

G3

11624

11617

11622

11540

11567

11551

11563

11567

11585

11589

11598

11596

11589

11598

11596

11621

11615

11622

11621

11615

11622

11624

11620

11622

12078

12084

12077

G11

G12

G13

560

552

574

552

546

572

564

552

580

560

550

576

564

556

578

560

554

580

560

556

580

562

554

580

627

621

645

G14

G15

G16

3058

3049

3045

3027

3013

3013

3041

3034

3028

3044

3031

3031

3044

3031

3031

3055

3043

3043

3055

3043

3043

3061

3046

3047

3187

3169

3172

G22

G23

G24

13346

13317

13314

13185

13203

13165

13203

13222

13242

13246

13258

13255

13246

13260

13255

13295

13290

13276

13295

13290

13276

13318

13322

13319

14123

14129

14131

G32

G33

G34

1390

1360

1368

1370

1348

1348

1392

1362

1364

1382

1356

1360

1394

1368

1368

1386

1362

1368

1396

1376

1372

1392

1362

1368

1560

1537

1541

G35

G36

G37

7670

7660

7666

7567

7555

7676

7588

7581

7602

7605

7604

7601

7605

7604

7608

7635

7632

7643

7635

7632

7643

7665

7643

7657

8000

7996

8009

G43

G44

G45

6656

6643

6652

6592

6587

6598

6621

6618

6620

6622

6634

6629

6622

6634

6629

6659

6642

6646

6659

6642

6646

6655

6649

6634

7027

7022

7020

G48

G49

G50

6000

6000

5880

6000

6000

5862

6000

6000

5880

6000

6000

5880

6000

6000

5880

6000

6000

5868

6000

6000

5880

6000

6000

5880

6000

6000

5988

Metaheuristic Sum % of SDP
SDP 157743 100

Circut 150623 95.49

GRASP 149337 94.67

GRASP + PR 149809 94.97

GRASP + VNS 149981 95.08

GRASP + NNS + PR 150060 95.13

VNS 150395 95.34

VNS + PR 150441 95.37

MA + VNS 150580 95.46

1005

9. CONCLUSIONS
This paper has introduced a hybrid evolutionary algorithm to
efficiently solve the Max-Cut problem. This hybridization is
based on a low-level hybridization between a Variable
Neighborhood Search and a Memetic Algorithm. This hybrid
schema exploits the power of memetic algorithms to explore the
solution space. On one hand, we have used a Variable
Neighborhood Search as an additional intensification procedure to
improve the corresponding optimization process. On the other
hand, a memetic algorithm is mainly used to diversify the
corresponding search process. Notice that this memetic algorithm
includes several problem-dependent data and methods.
Taking into account the experimental results shown in thr above
section, we can conclude that the hybrid schema proposed
exploits the power of hybrid evolutionary algorithms to explore
the solution space, enhanced with VNS as an additional
intensification procedure. In other words, without adding much
additional computational burden, Variable Neighborhood Search
is able to improve the basic MA intensification strategy. On the
other hand, the proposed memetic algorithm improves also the
basic diversification strategy of VNS. The low-level hybridization
proposed in this paper get a synergy between both metaheuristics
The experimental results also show that this algorithm has a
robust behaviour and gives high quality solutions, independently
of the graph characteristics. The hybrid memetic-VNS algorithm
is quite efficient, taking into account that the other metaheuristics
have been executed 1000 times and the proposed algorithm only
once.

10. RERERENCES
[1] Barahona, F., Grötschel, M., Jürgen, M., and Reinelt, G., An

application of combinatorial optimization to statistical
optimization and circuit layout design. Operations Research,
36:493–513, 1988.

[2] Burer, S., Monteiro, R.D.C., Zhang X.: Rank-two Relaxation
heuristic for the Max-Cut and other Binary Quadratic
Programs. SIAM Journal of Optimization, 12:503-521, 2001.

[3] Chang, K.C, and. Du, D.-Z., Efficient Algorithms for Layer
Assignament Problems. IEEE Transaction on Computer-
Aided Desgin, CAD-6:67-78, 1987.

[4] Dolezal O., Hofmeister, T., Lefmann, H: A comparison of
approximation algorithms for the MAXCUT-problem. Reihe
CI 57/99, SFB 531, Universität Dortmund, 1999.

[5] Festa P., P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro:
Randomized heuristics for the MAX-CUT problem,
Optimization Methods and Software, vol. 7, pp. 1033-1058,
2002.

[6] Duarte, A., Fernández, F., Sánchez, A., Sanz, A.: A
Hierarchical Social Metaheuristic for the Max-Cut Problem,
4th European Conference on Evolutionary Computation in
Combinatorial Optimization (EvoCOP 2004), LNCS v.
3004, Springer 2004

[7] Fiduccia, C. and R. Matheysses: A Linear-Time Heuristic for
Improving Network Partitions. In Proceedings of 19th
Design Automation Conference, pp. 175-181, 1982.

[8] Glover, F. and G. Kochenberger, editors: Handbook of
Metaheuristic. Kluwer, Massachusetts, USA, 2003.

[9] Goemans, M. X., Williams, D.P.: Improved Approximation
Algorithms for Max-Cut and Satisfiability Problems Using
Semidefinite Programming. Journal of the ACM.42:1115-
1142, 1995.Goldberg. D.: Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
1989.

[10] Gosti, W. et al.: Approximation Algorithms for the Max-Cut
Problem. Technical Report, Dept. Electrical Engineering and
Computer Science, University of California, 1995.

[11] Helmberg, C., Rendl, F.: A Spectral Bundle Method for
Semidefinite Programming. SIAM Journal of Computing,
10:673:696, 2000.

[12] Karp, R.M.: Reducibility among Combinatorial Problems. In
R. Miller J. Thatcher, editors, Complexity of Computers
Computation, Prenum Press, New York, USA (1972).

[13] Kernigham, B.W. and S. Lin: An Efficient Heuristic
Procedure for Partitioning Graphs. The Bell System
Technical Journal, pp. 291-307, 1970

[14] Hadlock F. O: Finding a Maximum Cut of a Planar Graph in
Polynomial Time. SIAM Journal on Computing 4 (1975)
221-225.

[15] Hansen, P. and Mladenovíc, N., Developments of variable
neighborhood search. In C.C. Ribeiro and P. Hansen, editors,
Essays and Surveys in Metaheuristics, pages 415–439.
Kluwer Academic Publishers, 2001.

[16] Kim, S.-H., Y.-H. Kim and B.-R. Moon: A Hybrid Genetic
Algorithm for the MAX CUT Problem. In Genetic and
Evolutionary Computation Conference, pp. 416-426, 2001

[17] Mladenovíc, N. and Hansen, P.. Variable neighborhood
search. Computers and Operations Research, 24:1097–1100,
1997.

[18] Michalewicz, Z.: Genetic Algorithms + Data Structures =
Evolution Programs. 3rd edn. Springer-Verlag, Berlin
Heidelberg New York, 1996.

[19] Moscato P., Cotta C.: A Gentle Introduction to Memetic
Algorithms. In Handbook of Metaheuristic. F. Glover and G.
A. Kochenberger, editors, Kluwer, Norwell, Massachusetts,
USA, 2003.

[20] Resende M.G.: GRASP With Path Re-linking and VNS for
MAXCUT, In Proc. of 4th MIC, Porto, July 2001.

[21] Shani, S. and T. Gonzales: P-Complete Approximations
Problems. Journal of ACM, 1976.

[22] Shor, N. Z.: Quadratic Optimization Problems, Soviet
Journal of Computing and System Science, 25:1-11, 1987.

[23] Talbi, E.–G., A Taxonomy of Hybrid Metaheuristics, Journal
of Heuristics, 8 (5): 541-564, 2002.

[24] Wheeler, J.W, An investigation of the Max-Cut Problem,
Internal Report, University of Iowa, 2004.

1006

